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We present a fully quantum scheme to perform two-dimensional atomic lithography based on a cross-cavity op-
tical Stern–Gerlach setup: an array of two mutually orthogonal cavities crossed by an atomic beam perpendicular
to their optical axes, which is made to interact with two identical modes. After deriving an analytical solution for
the atomic momentum distribution, we introduce a protocol allowing us to control the atomic deflection by
manipulating the amplitudes and phases of the cavity field states. Our quantum scheme provides subwavelength
resolution in the nanometer scale for the microwave regime. © 2014 Optical Society of America
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At the beginning of the 1990s, the optical Stern–Gerlach
(OSG) effect [1] was explored in a number of studies [2–4],
with a view to extracting information about a cavity field state
through its interaction with an atomic meter. Relying on the
fact that the momentum distribution of scattered atoms fol-
lows the photon statistics of the field state, strategies have
been devised to reconstruct the statistics [2] and even the full
state of a cavity mode [3]. These OSG strategies differ from
other measurement devices in quantum optics, such as quan-
tum nondemolition [5] and homodyne techniques [6], that
have been extensively explored from the 1990s until now [7].
More recently, a cross-cavity OSG has been proposed—where
a beam of atoms is made to cross two orthogonal cavities—to
measure the location and center-of-mass wave function of the
atoms [8,9]. Although the cross-cavity OSG has not yet been
implemented experimentally, the cross-cavity setup has been
built to test Lorentz invariance at the 10−17 level [10].

In addition to the developments in probing atomic and
cavity-field states, atomic lithography—where classical light
is used to focus matter on the nanometer scale—has also wit-
nessed considerable progress in recent decades [11–13]. The
atom–light interaction is manipulated to assemble a struc-
tured array of atoms with potential applications to nanotech-
nology-related fields. Beyond the achievements in the growth
of spatially periodic and quasi-periodic [14] atomic patterns
[11–13], recent works have explored the possibility of creating
nonperiodic arrays by using complex optical fields [15–17].

In this paper, we present a scheme to realize two-
dimensional (2D) quantum atomic lithography. In order to
characterize it, we derive an analytical solution for the 2D
OSG problem. We consider the cross-cavity OSG setup
sketched in Fig. 1, where, before entering the cavities, the
atoms are confined by a circular pinhole to a small region of
space centered around the superimposed nodes of the two
cavity modes. Differently from the developments in [8,9],

where dispersive atom–field interactions take place, we as-
sume the two-level atoms undergo simultaneous and resonant
interactions with two identical modes, one from each cavity,
thus being deflected in the plane defined by the two mutually
perpendicular cavities’ optical axes. An appropriate ansatz on
the spatial distribution of the atoms across the pinhole ena-
bles us to derive an analytical expression for the atomic mo-
mentum distribution after the atom–field interactions. Our
protocol to generate 2D nonperiodic complex atomic patterns
is based on a map that relates the transverse momentum ac-
quired by the atoms to the previously prepared cavity-field
state. Interestingly, we find that the (abstract) momentum-
quadrature components of the field states are directly associ-
ated with the (real) atomic momentum components.

Before addressing the cross-cavity OSG, it is worth men-
tioning previous works in the literature on quantized light
lenses for atomic waves. We start with the proposals for fo-
cusing and deflecting an atomic beam through a quantized
field, which also address the process of creating regular struc-
tures with a period of atomic size [18–20]. There is also the
quantum prism proposal, where the deflection of an atom
de Broglie wave at a cavity mode can produce an entangled
state in which discernible atomic beams are entangled to pho-
ton Fock states [21]. Optical lenses made of classical field
have also been extensively studied [22]. In a sense, we are thus
presenting a generalization of these results to perform 2D
quantum atomic lithography. Indeed we are deriving an ana-
lytical solution for the atomic momentum distribution and
introducing a protocol allowing us to control the atomic de-
flection through the amplitudes and phases of the cavity field
states. As becomes clear below, a new ingredient introduced
in our developments is the use of squeezed states of the radi-
ation fields in the cross-cavity device to increase the resolu-
tion of the atomic momentum distribution.
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In the cross-cavity OSG, sketched in Fig. 1, the beam of two-
level atoms (of transition frequency ω0) crosses the two
cavities in a direction perpendicular to their orthogonal opti-
cal axes, to interact resonantly with two identical modes (of
frequency ω � ck � 2πc∕λ). To simplify the mathematical
working, we proceed to a set of reasonable approximations,
starting by assuming that both cavity modes have the same
electric field per photon (E0), thus giving rise to the same in-
teracting dipole moment μ � μx � μy. We next assume that
the atomic longitudinal kinetic energy P2

z∕2M , being consider-
ably higher than the typical atom–field coupling energy����
n

p
μE0, remains practically unaffected during the atom–field

interaction time. Moreover, we also neglect the change in the
atomic transverse kinetic energy under the Raman–Nath re-
gime, where �ΔP2

x � ΔP2
y�∕2M ≪

����
n

p
μE0. Finally, we proceed

to the Stern–Gerlach regime by assuming that a small circular
aperture is placed in front of the array of cavities to collimate
the atomic beam in a the small region Δr ≪ λ centered on the
nodes of the standing-wave fields at r � 0, thus allowing the
linearization of the usual cavity standing-wave profile:
sin kx ≈ kx and sin ky ≈ ky. Under these assumptions, the
Hamiltonian governing the interaction of the atom at position
�x � r cos θ; y � r sin θ� with the cavity field reads

H � −μE0kr�σ��cos θa� sin θb� � σ
−

�cos θa† � sin θb†��;
(1)

where a and b (a† and b†) stand for the annihilation (creation)
operators of the cavity modes with optical axes in the x and y
directions, respectively, while σ� � jeihgj and σ

−

� jgihej de-
scribe the raising and lowering operators for the atomic tran-
sitions. Before entering the cavities, the two-level atoms
(ground g and excited e states) are prepared, in a Ramsey
zone, in the superposition state cgjgi � cejei, such that the
de Broglie atomic wave packet crossing the cross-cavity array
is given by jψatomi �

R
∞
0

R
2π
0 drdθrf �r; θ�jr; θi�cgjgi � cejei�,

where jf �r; θ�j2 accounts for the initial spatial distribution
of the atoms normal to the beam, as determined by the pin-
hole. Regarding the cavity modes, we assume that they are
initially prepared in the state jψ fieldi �

P∞
m·n�0 Cm;njm;niab.

Instead of computing the spatial distribution of the atoms just
after interacting with the cavity modes at t � τ, we compute,
as in [3], the probability distribution in momentum space using

the time-of-flight technique. Since the atoms evolve as free
particles for t > τ, the desired spatial distribution is simply
a picture of their momentum distribution at t � τ, provided
the distance traveled at t > τ is much larger than the atomic
beam size. At this time, given the atom–field entanglement in
momentum space, we derive the system density matrix which,
traced over the Fock states and the internal degrees of
freedom of the atoms, leaves us with the atomic momentum
distribution

W�℘;ϕ; τ� � jcgj2
X∞
N�0

����
XN
m�0

Cm;N−mF
g�N�
m;0

����
2

� 1
2
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����cg
XN
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g�N�
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XN
m�1
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e�N�
m;n

����
2

� 1
2

X∞
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XN
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Cm;N−mF
g�N��
m;n − ce

XN
m�1

Cm−1;N−mF
e�N��
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����
2

;

(2)

where N corresponds to the total number of excitations of a
given subspace and ℘ � p∕ℏk to the scaled atomic momen-
tum, with px � p cos ϕ, py � p sin ϕ. The Fourier transforms
of the spatial function f �r; θ� reads

F ε�N�
m;n �℘;ϕ; τ� �

Z
∞

0

Z
2π

0

dθdρ
2πk

ρf
�
ρ

k
; θ
�

× B�N−δεe�
m−δεe;n−δεe

�θ� � e−iρ�℘ cos�θ−ϕ�− ���
n

p
Λ�; (3)

with ρ � kr, ε standing for the atomic states g or e, δεe for the
Kronecker delta (δee � 1, δge � 0), and Λ � μE0τ∕ℏ for the
atom–field interaction parameter. Finally, the functions

B�N�
m;n�θ� �

Xmin�n;m�

l�max�0;m�n−N�
B̄�N�
m;n;l�cos θ�N−m−n�2l�sin θ�m�n−2l;

(4a)

B̄�N�
m;n;l � �−1�m−l

�����������������������������������������������
m!n!�N −m�!�N − n�!

p
l!�m − l�!�n − l�!�N −m − n� l�! ; (4b)

follow from the Bogoliubov transform used to diagonalize
Hamiltonian (1).

In order to generate the 2D momentum distribution, we
have to solve the Fourier integrals in Eq. (3). To this end
we assume, instead of the usual Gaussian profile, the expo-
nential azimuthal spatial distribution of the atoms

f
�
ρ

k
; θ
�
� 1������

2π
p

Δr
exp

�
−

ρ

2kΔr

�
; (5)

since it enables analytical solutions to the Fourier integrals.
Inserting Eq. (5) into Eq. (34), we obtain

F ε�N�
m;n �℘;ϕ;τ�

�
Xmin�m−δεe;n−δεe�

l�max�0;m�n−N−δεe�

XN−u�δεe

s�0

Xu−2δεe
t�0

�ieiϕ�v�δεeRε�N�
m;n;l;s;t;uS

ε�N�
n;s;t ; (6)

Fig. 1. Sketch of the cross-cavity OSG.
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where we have used the Newton binomial coefficients:

Rε�N�
m;n;l;s;t;u

≡
�−1�u−t−2δεe
2N−δεe iu−2δεe

�
N − u� δεe

s

��
u − 2δεe

t

�
B̄�N−δεe�
m−δεe;n−δεe;l

; (7a)

Sε�N�
s;t;n�℘;τ�

� �−1�ϒ�v�δεe�������
2π

p
kΔr

�℘2� γ2�1∕2jv� δεej� γ

�℘2� γ2�3∕2
�

℘
γ��γ2�℘2�1∕2

�jv�δεej
;

(7b)

with u � m� n − 2l, v � 2�s� t� − N , and

ϒ�~ν� �
8<
:
0 for even∕odd ~ν ≥ 0
0 for even ~ν < 0
1 for odd ~ν < 0

; (8a)

γ�τ� � −�2kΔr�−1 � i
����
n

p
Λ�τ�: (8b)

Therefore, from the analytical expressions for the Fourier
transforms given by Eq. (6), we readily derive the atomic
momentum distribution in Eq. (2).

To illustrate the role of the interaction parameter in the
momentum distribution function, in Fig. 2 we display the
2D momentum distribution in the dimensionless space
℘x∕Λ ×℘y∕Λ, computed for the interaction parameters
(a) Λ � 5 and (b) Λ � 20. As expected, the resolution of
the distribution function becomes better as the interaction
parameter Λ is increased [2–4]. Moreover, the components of
transverse momentum acquired by the atoms are given by a
summation over the Fourier transforms Fm;n�℘;ϕ�, which,

because of their dependence on the e−iρ�℘ cos�θ−ϕ�− ���
n

p
Λ� term

[see Eq. (6)], each yield a radial transverse momentum of
the atoms ℘ � ����

n
p

Λ, with n ≤ N .
Another important feature visible in Fig. 2 is that the phase

factor in the prepared atomic state is responsible for the asym-
metry of the distributions, here favoring the probabilities on
the first and second quadrant of ℘x∕Λ ×℘y∕Λ. As shown be-
low, this asymmetry of the distribution is an important
ingredient to achieve atomic lithography. Here we stress that
the necessary presence of the ground state in the atomic

superposition produces a great number of atoms with no sig-
nificant deflection (see detailed discussion in [23]), causing
the distribution around the origin (n � 0) to reach values con-
siderably larger than those for n > 0. Therefore, to highlight
the discrete pattern of peaks for n > 0, which corresponds to
atoms that have indeed interacted with the cavities light, we
have cut off in Fig. 2 the distributions around the origin, for
W > 2 × 10−3 in Fig. 2(a) and W > 5 × 10−4 in Fig. 2(b). Based
on the same reasoning, we have neglected the distribution
around the origin for purposes of lithography.

We also observe in Fig. 2 that, by increasing the interaction
parameter Λ and consequently the transverse momentum ℘,
the atoms are scattered to a larger region of the momentum
space, at the expense of decreasing probabilities. For this rea-
son, for the purpose of lithography, that is, to concentrate the
probability distribution around a desired spot, it is better to
use small values of Λ. Assuming that the atoms are measured
on a screen located at a distance L from the cavities, the trans-
verse displacement associated with each radius is giving by
rn � ����

n
p

ΛℏkL∕mv, where v is the longitudinal atomic veloc-
ity. With L ∼ 0.5 m and typical v ∼ 500 m∕s, we obtain in
the microwave regime: rn ∼

����
n

p
Λ∕10, giving radii on the nano-

meter scale for an interaction parameter Λ ∼ 10, that are
separated by decreasing distances rn�1 − rn ∼ � �������������

n� 1
p

−����
n

p �Λ∕10 nm between concentric radii. This scheme provides
subwavelength resolution in the nanometer scale using micro-
waves, for a wide range of photon numbers, demanding the
field to be treated in a quantum way.

While the cross-cavity OSG setup can be applied to two-
mode tomography [21], this device was designed from the
start for the purpose of atomic lithography. After all, it seems
quite reasonable to expect to be able to control the 2D deflec-
tion of the atomic beam by manipulating the cavity-mode
states. Pursuing this initial goal, our protocol to achieve
atomic lithography follows precisely from the manipulation
of the amplitudes and phases of coherent jαi or squeezed co-
herent Sξjαi � jαξi states (ξ � reiφ standing for the squeeze
parameters, with ξ � 0 for the coherent state) previously pre-
pared in both cavity modes. As we shall now show, this
manipulation enables us to modulate the atomic distribution
by concentrating this function around a desired spot. To this
end, we resort to a map that associates the (real) transverse
momentum components ℘x, ℘y acquired by the atoms with
the field states prepared in the two cavities, a and b, which
must be confined to their (abstract) momentum-quadrature
components, namely αξ � eiφα jαξj and βξ0 � eiφβ jβξ0 j, with
φα, φβ � 	π∕2, respectively. While the choice of phases de-
fines the quadrant in which the maximum of the atomic dis-
tribution is located: αξ � ijαξj and βξ0 � ijβξ0 j defining the first
quadrant of the space℘x ×℘y, αξ � −ijαξj and βξ0 � ijβξ0 j de-
fining the second quadrant and so on, the amplitudes jαξj and
jβξ0 j, and consequently the mean values ᾱξ � hαξja†ajαξi and
β̄ξ � hβξ0 jb†bjβξ0 i, define the average radius and angle of the
maximum of the atomic distribution. More specifically, we
obtain the relations

℘̄ � �℘̄x � ℘̄y�1∕2 ≈ Λ�ᾱξ � β̄ξ0 �1∕2; (9a)

ϕ̄ ≈ sign�φα�sign�φβ�tan−1
�������������
β̄ξ0∕ᾱξ

q
� πδφα ;−jφβ j: (9b)

Fig. 2. Atomic momentum distribution against ℘x∕Λ ×℘y∕Λ for
(a) Λ � 5 and (b) Λ � 20. Simulations realized for kΔr � 2π∕10, with
the atoms initially prepared in the superposition �jgi � eiπ∕3jei�∕

���
2

p
,

and the cavity modes a and b in the product of coherent states
jψ fieldi � jαi ⊗ jβi, with α � βeiπ∕2 � 1.5eiπ∕2.
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The quantum nature of the fields reveals itself in the discrete
peaks with mean momentum

����
n

p
Λ. Since the expectation

value of n is approximately the average total number of pho-
tons in the cavities hni ≈ ᾱξ � β̄ξ0 , we infer that ℘̄x ≈ Λᾱξ and
℘̄y ≈ Λβ̄ξ0 , and consequently Eqs. (9a) and (9b).

Apart from the manipulation of the cavity mode states, we
must stress that the phase factor appearing in the prepared

atomic superposition �jgi � eiϰjei�∕
���
2

p
is another important

ingredient for the achievement of atomic lithography. We have
found that the choice ϰ � π∕2 maximizes the distribution
around the desired ℘̄ and ϕ̄, so it will be adopted in our illus-
tration of the lithography process.

We begin by showing the effectiveness of the map in
Eq. (9) and by discussing the resolution of the atomic beam
deflection—its sharpness around the desired spot—achieved
when coherent or squeezed coherent states are prepared in
both cavity modes. We demonstrate that the more a coherent
state is squeezed in the momentum quadrature, the better the
resolution becomes. Furthermore, besides the need to confine
the fields to their momentum-quadrature components, their
squeezing must also be done in the same field quadrature,
namely φ � π.

In Fig. 3(a), we present the momentum distribution follow-
ing from the coherent states α0 � β0 � 3.54i, with Λ � 4.
We clearly observe a peak located around the desired values
℘̄ � 20 and ϕ̄ � π∕4, in excellent agreement with the values
derived from Eq. (9). A view from above of this momentum
distribution is also presented (again disregarding the

corresponding probabilities around the center), which seems
to be more convenient for tomographic purposes.

In Fig. 3(b), the atomic momentum distribution resulting
from a squeezed state generated from α � β � 5.77i and with
squeezing factors r � r0 � 0.5 [other parameters being the
same as in Fig. 3(a)], is presented, exhibiting a higher resolu-
tion achieved around the same target ℘̄ � 20 and ϕ̄ � π∕4.
Indeed a sharper peak of the momentum distribution is lo-
cated around the desired spot. The region of the distribution
function concentrating substantial probabilities around the
desired spot has decreased significantly. By increasing further
the squeezing factors to r � r0 � 1, and using α � β � 9.06i to
keep ℘̄ � 20 and ϕ̄ � π∕4, we observe in Fig. 3(c) that the
resolution of the distribution is further enhanced.

Next, we demonstrate how to manipulate the radial and an-
gular degrees of freedom of the atomic deflection. Once more
assuming Λ � 4 and squeezed states generated from α � 5.7i
and β � 7.1i, with r � r0 � 1, in Fig. 4(a) we present the dis-
tribution associated with the target ℘̄ � 15 and ϕ̄ � 5π∕18,
showing that smaller values of the radii ℘̄ may be achieved.
Although values of ℘̄ larger than 20 may also be accessed, we
limited ourselves to ℘̄ ≤ 20 because of the large computa-
tional demand to compute Eq. (2). Finally, in Fig. 4(b), we take
the same parameters as in Fig. 4(a), but with squeezed states
generated from α � −5.7i and β � 7.1i, associated with the
rotated target ℘̄ � 15 and ϕ̄ � 13π∕18.

In conclusion, we have thus presented a full quantum
mechanical scheme for atomic lithography and demonstrated
its effectiveness and tunability. We stress that, differently
from previous setups, the cavity setup provides a tunable
lithographic scheme, in the sense that it is sufficient to tune
the intracavity field to monitor the deflection angle of the
atomic beam. Then, the cross cavity allows us to reach full
2D control of the beam deviation since each cavity offers con-
trol over one spatial degree of freedom. In particular, mask-
based techniques require designing a specific mask for each
atomic pattern—the light-based scheme requires only tuning
the fields to create a new pattern. Practically, it may be used to
design 2D microstructures. It is worth stressing that our aim is
not to compare the performance of our quantum scheme with
semiclassical atomic lithography, but to demonstrate the pos-
sibility of building effective potentials from the radiation–
matter interaction alone. The methods developed above also
enable the simultaneous tomography of two-mode states
by measuring the 2D atomic momentum distribution [23].

Fig. 3. Atomic momentum distribution for Λ � 4, kΔr � 2π∕10, the
atoms prepared in the superposition state �jgi � eiπ∕2jei�, and the
cavity modes in the (a) coherent states α0 � β0 � 3.54i, (b) squeezed
coherent states with α � β � 5.77i and squeezing factors r � r0 � 0.5,
and (c) squeezed coherent states with α � β � 9.06i and squeezing
factors r � r0 � 1. In all three cases we aim at the target ℘̄ � 20
and ϕ̄ � π∕4.

Fig. 4. Atomic momentum distribution for Λ � 4, kΔr � 2π∕10, the
atoms prepared in the superposition state �jgi � eiπ∕2jei�, and the cav-
ity modes in the squeezed states generated from the squeezing factors
r � r0 � 1, with (a) α � 5.7i and β � 7.1i and (b) α � −5.7i and
β � 7.1i.
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We finally observe that the 2D cross-cavity OSG can also be
used to generate Schrödinger-cat atomic states and entangled
atomic states in positional space, a goal that we will pursue at
the next step.
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